Friedman's Theorem: from standard systems to fixed points

Saeideh Bahrami

Institute for Research in Fundamental Sciences (IPM) joint work with Ali Enayat

> July 15, 2019 IAL

Peano Arithmetic (1889)

 $\mathcal{L}_A := \{0, 1, +, ., <\}$

 $PA^- :=$ the positive segment of discretely ordered rings; i.e.

- \bullet associativity of . and +
- distributivity of . on +
- $\bullet\,$ commutativity of . and $+\,$

•
$$\forall x \ (x+0=x), \ \forall x \ (x.0=0) \ \text{and} \ \forall x \ (x.1=x)$$

• < is linearly ordered

•
$$\forall x, y, z \ (x < y \rightarrow x + z < y + z)$$
 and
 $\forall x, y, z \ ((z > 0 \ \land \ x < y) \rightarrow x.z < y.z)$

 $PA := PA^{-} + I\varphi; \text{ for every } \varphi \in Form(\mathcal{L}_A).$ $I\varphi:$

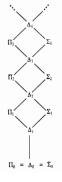
 $\forall z \; [(\varphi(0,z) \land (\forall x \; (\varphi(x,z) \rightarrow \varphi(x+1,z)))) \rightarrow \forall x \; (\varphi(x,z))].$

Fragments of Arithmetic

 Σ₀ = Π₀ = Δ₀ := the class of all bounded formulas; i.e those formulas whose quantifiers all occur as ∀x < t or ∃x < t.

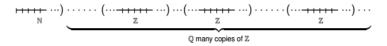
•
$$\Sigma_{n+1} = \{ \exists x \varphi(x) : \varphi \in \Pi_n \};$$

 $\Pi_{n+1} = \{ \forall x \varphi(x) : \varphi \in \Sigma_n \}.$



Models of Arithmetic

- Standrad model: $\mathbb{N} := (\omega, 0, 1, +, ., <).$
- Nonstandard models: Tarski (1934)



- I \subseteq M is an **inital segment** if for all $a, b \in$ M if a < b and $b \in$ I, then $a \in$ I.
- An initial segment with no maximum element in \mathcal{M} is called a **cut**.
- Σ_n -Overspill. For every Σ_n -formula $\varphi(x)$ and every proper cut I of model \mathcal{M} of $I\Sigma_n$, if φ holds for every element of I, then there is some a > I s.t. φ holds for every element of M which is less than a.

Coding in $\mathcal{M} \models I\Delta_0 + Exp$:

For all $a \in M$ there exists unique c < a and $a_0 < ... < a_{c-1} < a$ such that the sequence $(a_0, ..., a_{c-1})$ is the binary expansion of a in \mathcal{M} . We say $x \ge a$ iff there is some y < c s.t. $x = a_y$. $a_{\mathbb{E}} := \{x \in M : x \ge a\}$. $X \subseteq M$ is **coded** if there is some $a \in M$ s.t. $X = a_{\mathbb{E}}$.

Satisfaction Predicate

 $(n \in \omega)$ Sat_{Σ_n} is the \mathcal{L}_A -formula defining the satisfaction predicate for Σ_n -formulas for an ambient model satisfying $I\Delta_0 + Exp$.

Types

- A type over \mathcal{M} is a family p(x) of formulas with free variable x and finitely many parameters in \mathcal{M} which is finitely satisfiable in \mathcal{M} .
- A type is Σ_n , if all of its elements are Σ_n -formulas.
- p(x) is a recursive type, if $\{ \ulcorner \varphi(x,y) \urcorner : \varphi(x,a) \in p(x) \}$ is a recursive subset of ω .
- Model \mathcal{M} is **recursively saturated** if all recursive types are realized in \mathcal{M} .
- Every nonstandard model of PA is Σ_n-recursively saturated, for all n ∈ ω.
 More generally, every coded Σ_n-type is realized in a nonstandard model of IΣ_n.

Scott's sets

Let T be a completion of PA. We say $X \subseteq \omega$ is **representable** in T if there exists some formula φ such that:

 $n \in \mathbf{X}$ iff $\mathbf{T} \vdash \varphi(n)$.

 $\operatorname{Rep}(T) :=$ the family of all representable subsets of ω in T.

Definition

Scott set $\mathcal{X} \subseteq P(\omega)$ is called a Scott set iff:

- 1) \mathcal{X} is a Boolean algebra of sets.
- 2) \mathcal{X} is closed under recursion; i.e. if $A \in \mathcal{X}$ and B is recursive over A, then $B \in \mathcal{X}$.
- Weak König's Lemma holds for X; i.e. if Tr ∈ X is an infinite binary tree, then there is some P ∈ X s.t. P is an infinite branch of Tr.

Theorem (Scott 1962)

Let T be an axiomatizable theory containing PA and \mathcal{X} be a countable Scott set s.t. $T \in \mathcal{X}$. Then there are continuum many completions \overline{T} of T s.t. $\mathcal{X} = \operatorname{Rep}(\overline{T})$.

Standard Systems (Friedman 1973)

Definition $SSy(\mathcal{M}) := \{ \omega \cap a_E : a \in M \}.$

Theorem (Corollary of Scott's Theorem)

- 1) For each model \mathcal{M} of PA, $SSy(\mathcal{M})$ is a Scott set.
- 2) If \mathcal{X} is a countable Scott set, then there is a model \mathcal{M} of PA such that $SSy(\mathcal{M}) = \mathcal{X}$.

Lemma

For every nonstandard model \mathcal{M} of PA it holds that:

- 1) $SSy(\mathcal{M}) = \{ \omega \cap X : X \text{ is definable in } \mathcal{M} \}.$
- 2) If $a \in M$, then $tp_{\Sigma_n}(a) \in SSy(\mathcal{M})$. In particular, if \mathcal{M} is recursively saturated $tp(a) \in SSy(\mathcal{M})$.

A very unstable theory

•
$$\operatorname{Th}(\mathcal{M})$$

• $S(\mathcal{M}) \longrightarrow \operatorname{SSy}(\mathcal{M})$
• $\operatorname{Lt}(\mathcal{M})$

Recursively Saturated Models (1970s)

Theorem

Let $\mathcal{M} \models PA$. Then the following are equivalent:

- 1) \mathcal{M} is recursively saturated.
- 2) \mathcal{M} is $SSy(\mathcal{M})$ -saturated.
- 3) For all $a \in M$, $tp(a) \in SSy(\mathcal{M})$.

Theorem

Let \mathcal{M} and N be countable recursively saturated models of PA. Then $\mathcal{M} \cong \mathcal{N}$ iff $SSy(\mathcal{M}) = SSy(\mathcal{N})$ and $Th(\mathcal{M}) = Th(\mathcal{N})$.

Scott (1950s)

Is there a model of PA that is isomorphic to a proper initial segment of itself?

Vaught (1962)

There is a model of true arithmetic that is isomorphic to a proper initial segment of itself.

Friedman (1973)

Let \mathcal{M}, \mathcal{N} be countable nonstanded models of PA. The following statements are equivalent:

- 1. $SSy(\mathcal{M}) = SSy(\mathcal{N})$, and $Th_{\Sigma_1}(\mathcal{M}) \subseteq Th_{\Sigma_1}(\mathcal{N})$.
- 2. There is an embedding $j: \mathcal{M} \to \mathcal{N}$ such that $j(\mathbf{M}) \subsetneq_{e} \mathbf{N}$.

Wilkie (1977)

There are continuum-many initial segments of every countable nonstandard model of \mathcal{M} of PA that are isomorphic to \mathcal{M} .

Wilkie (1977)

If \mathcal{M} and \mathcal{N} are countable nonstandard models of PA, then there are arbitrarily high initial segment of \mathcal{N} that are isomorphic to \mathcal{M} iff $SSy(\mathcal{M}) = SSy(\mathcal{N})$ and $Th_{\Pi_2}(\mathcal{M}) \subseteq Th_{\Pi_2}(\mathcal{N})$.

Lipshitz (1979)

A countable nonstandard model \mathcal{M} of PA can be embedded into arbitrarily low nonstandard initial segments of itself iff $\mathcal{M} \models Th_{\Pi_1}(\mathbb{N})$.

Solovay (1981)

Every countable **recursively saturated** model of $I\Delta_0 + B\Sigma_1$ is isomorphic to a proper initial segment of itself.

Ressayre (1987)

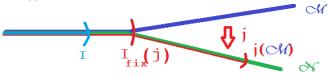
For every countable nonstandard model \mathcal{M} of $I\Delta_0$, $\mathcal{M} \models I\Sigma_1$ iff for every $a \in M$ there is a proper initial self-embedding j of \mathcal{M} such that j(x) = x for all $x \leq a$.

Generalization of $SSy(\mathcal{M})$

Let I be a cut in \mathcal{M} . $SSy_{I}(\mathcal{M}) := \{I \cap a_{E} : a \in M \setminus I\}.$

Hájek & Pudlák (1980)

If I is a cut closed under exponentiation that is shared by two nonstandard models \mathcal{M} and \mathcal{N} of PA such that \mathcal{M} and \mathcal{N} have the same I-standard system, and $\operatorname{Th}_{\Sigma_1}(\mathcal{M}, i)_{i \in I} \subseteq \operatorname{Th}_{\Sigma_1}(\mathcal{N}, i)_{i \in I}$, then there is an embedding j of \mathcal{M} onto a proper initial segment of \mathcal{N} such that j(i) = i for all $i \in I$.

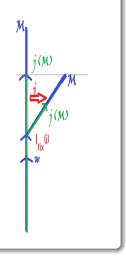


Fixed points

Let $j: \mathcal{M} \to \mathcal{M}$ is a self-embedding:

•
$$I_{fix}(j) := \{m \in M : \forall x \le m \ j(x) = x\}$$

•
$$Fix(j) := \{m \in M : j(m) = m\}.$$



Automorphisms (1990s)

Suppose \mathcal{M} is a countable **recursively saturated** model of PA, and I is a proper initial segment of \mathcal{M} .

(a) (Smoryński) $I = I_{fix}(j)$ for some automorphism j of \mathcal{M} iff I is closed under exponentiation.

(b) (Kaye-Kossak-Kotlarski) I = Fix(j) for some automorphism j of \mathcal{M} iff I is a strong cut of \mathcal{M} and $I \prec \mathcal{M}$.

(c) (Kaye-Kossak-Kotlarski) $Fix(j) = K(\mathcal{M})$ for some automorphism j of \mathcal{M} (i.e. j moves every undefinable element of \mathcal{M}) iff \mathbb{N} is a strong cut of \mathcal{M} .

Strong Cuts (Kirby-Paris 1977)

Definition

Given a cut I of \mathcal{M} , I is said to be a strong cut of \mathcal{M} if, for each function f whose graph is coded in \mathcal{M} and whose domain includes I, there is some a in M such that for all $m \in I$, $f(m) \notin I$ iff a < f(m).

$$f(\mathbf{I}) \qquad \mathbf{I} \qquad \mathbf{a} \qquad f(\mathbf{I}) \qquad \mathbf{M}$$

Theorem (Kirby-Paris (1977))

Let $\mathcal{M} \models PA$ and I be a proper cut of \mathcal{M} . Then the following are equivalent:

- 1) I is strong in \mathcal{M} .
- 2) $(I, SSy_I(\mathcal{M})) \models ACA_0; i.e. i)$ for all $X \in SSy_I(\mathcal{M}), (\mathcal{M}, X) \models PA^*$ and, ii) $SSy_I(\mathcal{M})$ is closed under arithmetical comprehension.
- 3) For all $a \in I$ and $n \in \omega$, $I \longrightarrow (I)_a^n$; i.e. for every coded function $f : [I]^n \longrightarrow a$, there is some $A \in SSy_I(\mathcal{M})$ s.t. f is constant on $[A]^n$.

Theorem

- 1) There exists model \mathcal{M} of PA in which \mathbb{N} is a strong cut.
- 2) There exists model \mathcal{N} of PA in which \mathbb{N} is not a strong cut.

Bahrami-Enayat (2018)

Suppose \mathcal{M} is a countable model of $I\Sigma_1$, and I is a proper cut of \mathcal{M} . Then:

- 1) $I = I_{fix}(j)$ for some proper initial self-embedding j of \mathcal{M} iff I is closed under exponentiation.
- 2) I = Fix(j) for some proper initial self-embedding j of \mathcal{M} iff I is a strong cut of \mathcal{M} and $I \prec_{\Sigma_1} \mathcal{M}$.
- 3) Fix $(j) = K^1(\mathcal{M})$ for some proper initial self-embedding j of \mathcal{M} (i.e. j moves every Σ_1 -undefinable element of \mathcal{M}) iff \mathbb{N} is a strong cut of \mathcal{M} .

WKL₀

- $(\mathcal{M},\mathcal{A})\models \mathrm{WKL}_0 \mathrm{~iff}$
 - 1) $(\mathcal{M}, S)_{S \in \mathcal{A}} \models \mathrm{I}\Sigma_1$
 - 2) Comprehension for Δ_1^0 -formulas
 - 3) Weak König's Lemma (which asserts that every infinite subtree of the full binary tree has an infinite branch)

Bahrami (2019)

Suppose $(\mathcal{M}, \mathcal{A})$ is a countable model of WKL₀, and I is a proper cut of \mathcal{M} . Then:

- 1) $I = I_{fix}(j)$ for some proper initial self-embedding j of $(\mathcal{M}, \mathcal{A})$ iff I is closed under exponentiation.
- 2) I = Fix(j) for some proper initial self-embedding j of $(\mathcal{M}, \mathcal{A})$ iff I is a strong cut of \mathcal{M} and $I \prec_{\Sigma_1} \mathcal{M}$.

Thank you!