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Preliminaries

Peano Arithmetic (1889)

LA := {0, 1,+, . , <}
PA− := the positive segment of discretely ordered rings; i.e.

associativity of . and +

distributivity of . on +

commutativity of . and +

∀x (x+ 0 = x), ∀x (x.0 = 0) and ∀x (x.1 = x)

< is linearly ordered

∀x, y, z (x < y → x+ z < y + z) and
∀x, y, z ((z > 0 ∧ x < y) → x.z < y.z)

PA := PA− + Iφ; for every φ ∈ Form(LA).
Iφ :

∀z [(φ(0, z) ∧ (∀x (φ(x, z) → φ(x+ 1, z)))) → ∀x (φ(x, z))].
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Preliminaries

Fragments of Arithmetic

Σ0 = Π0 = ∆0 := the class of all bounded
formulas; i.e those formulas whose quantifiers all
occur as ∀x < t or ∃x < t.

Σn+1 = {∃xφ(x) : φ ∈ Πn};
Πn+1 = {∀xφ(x) : φ ∈ Σn}.

IΣn = PA− + Iφ, for every φ ∈ Σn;
IΠn = PA− + Iφ, for every φ ∈ Πn.

Exp := ∀x ∃y (y = 2x).

Saeideh Bahrami (Institute for Research in Fundamental Sciences (IPM) joint work with Ali Enayat)Friedman’s Theorem: from standard systems to fixed pointsJuly 15, 2019 IAL 3 / 21



Preliminaries

Models of Arithmetic

Standrad model: N := (ω, 0, 1,+, . , <).

Nonstandard models: Tarski (1934)

I ⊆ M is an initail segment if for all a, b ∈ M if a < b and b ∈ I,
then a ∈ I.

An initial segment with no maximum element in M is called a cut.

Σn-Overspill. For every Σn-formula φ(x) and every proper cut I
of model M of IΣn, if φ holds for every element of I, then there is
some a > I s.t. φ holds for every element of M which is less than a.
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Preliminaries

Coding in M |= I∆0 + Exp:

For all a ∈ M there exists unique c < a and a0 < ... < ac−1 < a such
that the sequence (a0, ..., ac−1) is the binary expansion of a in M.
We say xEa iff there is some y < c s.t. x = ay.
aE := {x ∈ M : xEa}.
X ⊆ M is coded if there is some a ∈ M s.t. X = aE.

Satisfaction Predicate

(n ∈ ω) SatΣn
is the LA-formula defining the satisfaction predicate for

Σn-formulas for an ambient model satisfying I∆0 + Exp.
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Preliminaries

Types

A type over M is a family p(x) of formulas with free variable x
and finitely many parameters in M which is finitely satisfiable in
M.

A type is Σn, if all of its elements are Σn-formulas.

p(x) is a recursive type, if {⌜φ(x, y)⌝ : φ(x, a) ∈ p(x)} is a
recursive subset of ω.

Model M is recursively saturated if all recursive types are
realized in M.

Every nonstandard model of PA is Σn-recursively saturated, for all
n ∈ ω.
More generally, every coded Σn-type is realized in a nonstandard
model of IΣn.
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Standard System

Scott’s sets

Let T be a completion of PA. We say X ⊆ ω is representable in T if
there exists some formula φ such that:

n ∈ X iff T ⊢ φ(n).

Rep(T) := the family of all representable subsets of ω in T.

Definition

Scott set X ⊆ P(ω) is called a Scott set iff:

1) X is a Boolean algebra of sets.

2) X is closed under recursion; i.e. if A ∈ X and B is recursive over
A, then B ∈ X .

3) Weak König’s Lemma holds for X ; i.e. if Tr ∈ X is an infinite
binary tree, then there is some P ∈ X s.t. P is an infinite branch
of Tr.
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Standard System

Theorem (Scott 1962)

Let T be an axiomatizable theory containing PA and X be a countable
Scott set s.t. T ∈ X . Then there are continuum many completions T of
T s.t. X = Rep(T).

Standard Systems (Friedman 1973)

Definition

SSy(M) := {ω ∩ aE : a ∈ M}.

Theorem (Corollary of Scott’s Theorem)

1) For each model M of PA, SSy(M) is a Scott set.

2) If X is a countable Scott set, then there is a model M of PA such
that SSy(M) = X .
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Standard System

Lemma

For every nonstandard model M of PA it holds that:

1) SSy(M) = {ω ∩X : X is definable in M}.
2) If a ∈ M, then tpΣn(a) ∈ SSy(M).

In particular, if M is recursively saturated tp(a) ∈ SSy(M).

A very unstable theory

Th(M)
S(M) ⇝ SSy(M)
Lt(M)
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Standard System

Recursively Saturated Models (1970s)

Theorem

Let M |= PA. Then the following are equivalent:

1) M is recursively saturated.

2) M is SSy(M)-saturated.

3) For all a ∈ M, tp(a) ∈ SSy(M).

Theorem

Let M and N be countable recursively saturated models of PA. Then
M ∼= N iff SSy(M) = SSy(N ) and Th(M) = Th(N ).
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Initial embeddings

Scott (1950s)

Is there a model of PA that is isomorphic to a proper initial segment of
itself?

Vaught (1962)

There is a model of true arithmetic that is isomorphic to a proper
initial segment of itself.

Friedman (1973)

Let M, N be countable nonstandrd models of PA. The following
statements are equivalent:

1. SSy(M) = SSy(N ), and ThΣ1(M) ⊆ ThΣ1(N ).

2. There is an embedding j : M → N such that j(M) ⫋e N.
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Initial embeddings

Wilkie (1977)

There are continuum-many initial segments of every countable
nonstandard model of M of PA that are isomorphic to M.

Wilkie (1977)

If M and N are countable nonstandard models of PA, then there are
arbitrarily high initial segment of N that are isomorphic to M iff
SSy(M) = SSy(N ) and ThΠ2(M) ⊆ ThΠ2(N ).

Lipshitz (1979)

A countable nonstandard model M of PA can be embedded into
arbitrarily low nonstandard initial segments of itself iff M |= ThΠ1(N) .
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Initial embeddings

Solovay (1981)

Every countable recursively saturated model of I∆0 +BΣ1 is
isomorphic to a proper initial segment of itself.

Ressayre (1987)

For every countable nonstandard model M of I∆0, M |= IΣ1 iff for
every a ∈ M there is a proper initial self-embedding j of M such that
j(x) = x for all x ≤ a.
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Fixed points

Generalization of SSy(M)

Let I be a cut in M.
SSyI(M) := {I ∩ aE : a ∈ M \ I}.

Hájek & Pudlák (1980)

If I is a cut closed under exponentiation that is shared by two
nonstandard models M and N of PA such that M and N have the
same I-standard system, and ThΣ1(M, i)i∈I ⊆ ThΣ1(N , i)i∈I , then
there is an embedding j of M onto a proper initial segment of N such
that j(i) = i for all i ∈ I.

Saeideh Bahrami (Institute for Research in Fundamental Sciences (IPM) joint work with Ali Enayat)Friedman’s Theorem: from standard systems to fixed pointsJuly 15, 2019 IAL 14 / 21



Fixed points

Fixed points

Let j : M → M is a self-embedding:

Ifix(j) := {m ∈ M : ∀x ≤ m j(x) = x}.
Fix(j) := {m ∈ M : j(m) = m}.
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Fixed points

Automorphisms (1990s)

Suppose M is a countable recursively saturated model of PA, and I
is a proper initial segment of M.

(a) (Smoryński) I = Ifix(j) for some automorphism j of M iff I is
closed under exponentiation.

(b) (Kaye-Kossak-Kotlarski) I = Fix(j) for some automorphism j
of M iff I is a strong cut of M and I ≺ M.

(c) (Kaye-Kossak-Kotlarski) Fix(j) = K(M) for some
automorphism j of M (i.e. j moves every undefinable element of M)
iff N is a strong cut of M.
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Fixed points

Strong Cuts (Kirby-Paris 1977)

Definition

Given a cut I of M, I is said to be a strong cut of M if, for each
function f whose graph is coded in M and whose domain includes I,
there is some a in M such that for all m ∈ I, f(m) /∈ I iff a < f(m).
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Fixed points

Theorem (Kirby-Paris (1977))

Let M |= PA and I be a proper cut of M. Then the following are
equivalent:

1) I is strong in M.

2) (I, SSyI(M)) |= ACA0; i.e. i) for all X ∈ SSyI(M), (M,X) |= PA∗

and, ii) SSyI(M) is closed under arithmetical comprehension.

3) For all a ∈ I and n ∈ ω, I −→ (I)na ; i.e. for every coded function
f : [I]n −→ a, there is some A ∈ SSyI(M) s.t. f is constant on
[A]n.

Theorem

1) There exists model M of PA in which N is a strong cut.

2) There exists model N of PA in which N is not a strong cut.
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Fixed points

Bahrami-Enayat (2018)

Suppose M is a countable model of IΣ1, and I is a proper cut of M.
Then:

1) I = Ifix(j) for some proper initial self-embedding j of M iff I is
closed under exponentiation.

2) I = Fix(j) for some proper initial self-embedding j of M iff I is a
strong cut of M and I ≺Σ1 M.

3) Fix(j) = K1(M) for some proper initial self-embedding j of M
(i.e. j moves every Σ1-undefinable element of M) iff N is a strong
cut of M.

Saeideh Bahrami (Institute for Research in Fundamental Sciences (IPM) joint work with Ali Enayat)Friedman’s Theorem: from standard systems to fixed pointsJuly 15, 2019 IAL 19 / 21



Fixed points

WKL0

(M,A) |= WKL0 iff

1) (M, S)S∈A |= IΣ1

2) Comprehension for ∆0
1-formulas

3) Weak König’s Lemma (which asserts that every infinite subtree of
the full binary tree has an infinite branch)

Bahrami (2019)

Suppose (M,A) is a countable model of WKL0, and I is a proper cut
of M. Then:

1) I = Ifix(j) for some proper initial self-embedding j of (M,A) iff I
is closed under exponentiation.

2) I = Fix(j) for some proper initial self-embedding j of (M,A) iff I
is a strong cut of M and I ≺Σ1 M.
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Fixed points

Thank you!
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