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connect propositional and first-order interpolation

general methodology

existence of suitable skolemizations +
existence of Herbrand expansions +

propositional interpolance

→ first-order
interpolation.

This methodology is realized for lattice-based finitely-valued logics
and can be extended to (fragments of) infinitely-valued logics.



the procedure

1. Develop a validity equivalent skolemization replacing all
strong quantifiers in the valid formula A ⊃ B to obtain the
valid formula A1 ⊃ B1.

2. Construct a valid Herbrand expansion A2 ⊃ B2 for A1 ⊃ B1.
Occurrences of ∃xB(x) and ∀xA(x) are replaced by suitable
finite disjunctions

∨
B(ti ) and conjunctions

∧
B(ti ).

3. Interpolate the propositionally valid formula A2 ⊃ B2 with the
propositional interpolant I ∗:

A2 ⊃ I ∗ and I ∗ ⊃ B2

are propositionally valid.



the procedure

4 Reintroduce weak quantifiers in A2 ⊃ I ∗ and I ∗ ⊃ B2 to
obtain valid formulas

A1 ⊃ I ∗ and I ∗ ⊃ B1.

5 Eliminate all function symbols and constants not in the
common language of A1 and B1 by introducing suitable
quantifiers in I ∗. Let I be the result.

6 I is an interpolant for A1 ⊃ B1. A1 ⊃ I and I ⊃ B1 are
skolemizations of A ⊃ I and I ⊃ B. Therefore I is an
interpolant of A ⊃ B.



lattice-based finitely-valued logics

finite lattices L = 〈W ,≤,∪,∩, 0, 1〉 where ∪, ∩, 0, 1 are
supremum, infimum, minimal element and maximal element, 0 6= 1

A propositional language for L, L0(L,V ), V ⊆W is based on
propositional variables, truth constants Cv for v ∈ V , ∨, ∧, ⊃.

A first-order language for L, L1(L,V ), V ⊆W is based on the
usual first-order variables, predicates, truth constants Cv for
v ∈ V , ∨,∧,⊃,∃,∀.

→: W ×W ⇒W for L = 〈W ,≤,∪,∩, 0, 1〉 is an admissible
implication iff

u → v = 1 ⇔ u ≤ v ,

u ≤ v , f ≤ g ⇒ v → f ≤ u → g



skolemization

existence of suitable skolemizations +
existence of Herbrand expansions +

propositional interpolance

→ first-order
interpolation.

task: develop a validity equivalent skolemization replacing all
strong quantifiers in the valid formula A ⊃ B to obtain a valid
formula sk(A) ⊃ sk(B), s.t. the original formula can be
reconstructed



skolemization

A(sk(B)) is defined as follows: replace strong quantifiers in B

∃xC (x) −→
|W |∨
i=1

C (fi (x)), ∀xC (x) −→
|W |∧
i=1

C (fi (x))

where fi are new function symbols and x are the weakly quantified
variables of the scope
Skolem axioms are closed sentences

∀x(∃yA(y , x) ⊃
|W |∨
i=1

A(fi (x), x), ∀x(

|W |∧
i=1

A(fi (x), x) ⊃ ∀yA(y , x))

where fi are new function symbols (Skolem functions)



skolemization

Lemma

1. |=1 A(B) ⇒ |=1 A(sk(B))

2. S1 . . . Sk |=1 A(sk(B)) ⇒ S1 . . . Sk |=1 A(B)
for suitable Skolem axioms S1 . . . Sk

3. S1 . . . Sk |=1 A ⇒ |=1 A
where S1 . . . Sk are Skolem axioms and A does not contain
Skolem functions



Herbrand expansions

existence of suitable skolemizations +
existence of Herbrand expansions +

propositional interpolance

→ first-order
interpolation.

task: construct a valid Herbrand expansion AH ⊃ BH for
sk(A) ⊃ sk(B)

expansion

Let A contain only weak quantifiers. An expansion of A is a
quantifier free closed formula where

∃xB(x) in A −→
∨

B(ti ), ∀xC (x) in A −→
∧

C (sj)

for some ti , sj .



Herbrand expansions can be constructed

A Herbrand expansion is a valid expansion.

Proposition

Let A contain only weak quantifiers. Then

|=1 A ⇔ there is a valid Herbrand disjunction AH .



existence of suitable skolemizations +
existence of Herbrand expansions +

propositional interpolance

→ first-order
interpolation.

Theorem

Interpolation holds for L0(L,V ,→)

m

Interpolation holds for L1(L,V ,→).



the interpolation theorem

Proof. One direction is trivial. Let’s consider the the other.
⇓: Assume A ⊃ B ∈ L(L,V ) and |= A ⊃ B.

then, |= sk(A) ⊃ sk(B)

construct a Herbrand expansion AH ⊃ BH from sk(A) ⊃ sk(B)

construct prop. interpolant to obtain |= AH ⊃ I ∗, |= I ∗ ⊃ BH

use |= A(t) ⊃ ∃xA(x) and |= ∀xA(x) ⊃ A(t)

to obtain |= sk(A) ⊃ I ∗ and |= I ∗ ⊃ sk(B)

order all terms f (t) in I ∗ by inclusion (f is not in the common
language)



let f ∗(t) be the maximal such term in

|= sk(A) ⊃ I ∗ and |= I ∗ ⊃ sk(B)

I f ∗ is not in sk(A):

replace f ∗(t) by a fresh variable x : |= sk(A) ⊃ I ∗{f ∗(t)← x}

but then, |= sk(A) ⊃ ∀xI ∗{f ∗(t)← x}

by |= ∀xI ∗{f ∗(t)← x} ⊃ I ∗ also |= ∀xI ∗{f ∗(t)← x} ⊃ sk(B)

so we obtain

|= sk(A) ⊃ ∀xI ∗{f ∗(t)← x} and |= ∀xI ∗{f ∗(t)← x} ⊃ sk(B)



I f ∗(t) is not in sk(B)

replace f ∗(t) by a fresh variable x : |= I ∗{f ∗(t)← x} ⊃ sk(B)

but then, |= ∃xI ∗{f ∗(t)← x} ⊃ sk(B)

by |= I ∗ ⊃ ∃xI ∗{f ∗(t)← x} also |= sk(A) ⊃ ∃xI ∗{f ∗(t)← x}

so we obtain

|= sk(A) ⊃ ∃xI ∗{f ∗(t)← x} and |= ∃xI ∗{f ∗(t)← x} ⊃ sk(B)

repeat until all functions and constants not in the common
language are eliminated (among them the Skolem functions), let I
be the result
I is an interpolant of sk(A) ⊃ sk(B), therefore

A ⊃ I and I ⊃ B



example
The constant-domain intuitionistic Kripke frame K

is represented by the following lattice L



example

construct interpolant for ∃x(B(x) ∧ ∀yC (y)) ⊃ ∃x(A(x) ∨ B(x))

1. skolemization
5∨

i=1

(B(ci ) ∧ ∀yC (y)) ⊃ ∃x(A(x) ∨ B(x))

2. Herbrand expansion

5∨
i=1

(B(ci ) ∧ C (c1)) ⊃
5∨

i=1

(A(ci ) ∨ B(ci ))

3. propositional interpolant

5∨
i=1

(B(ci )∧C (c1)) ⊃
5∨

i=1

B(ci ),
5∨

i=1

B(ci ) ⊃
5∨

i=1

(A(ci )∨B(ci ))
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example

3. propositional interpolant

5∨
i=1

(B(ci )∧C (c1)) ⊃
5∨
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B(zi ) ⊃ ∃x(A(x) ∨ B(x))
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example

5.
5∨

i=1

(B(ci ) ∧ ∀yC (y)) ⊃ ∃z1 . . . ∃z5
∨

B(zi ),

∃z1 . . . ∃z5
∨

B(zi ) ⊃ ∃x(A(x) ∨ B(x))

6. use Skolem axiom

∃x(B(x) ∧ ∀yC (y)) ⊃
5∨

i=1

B(ci ) ∧ ∀yC (y)

to obtain original formula, Skolem axiom can be eliminated



Corollary

Interpolation holds for L0(L,V ,→),

|= A ⊃ B, A ⊃ B contain only weak quantifiers

⇓

there is a quantifier-free interpolant for A ⊃ B.

Proposition

Let L = 〈W ,≤,∪,∩, 0, 1〉.
i. L0(L, ∅,→) (and therefore L1(L, ∅,→)) never has the

interpolation property.

ii. L0(L,W ,→) (and therefore L1(L, ∅,→)) always has the
interpolation property.

It is therefore reasonable to consider the function

SPEC(L,→) = {V |L1(L,V ,→) interpolates}.
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extensions to infinitely-valued logics

use described methodology to prove interpolation for (fragments
of) infinitely-valued logics

I Gödel logic G[0,1], the logic of all linearly ordered Kripke
frames with constant domains

its connectives can be interpreted as functions over the real
interval [0, 1]

I ⊥: logical constant for 0

I ∨,∧,∃,∀ are defined as maximum, minimum, supremum,
infimum

I ¬A: A→ ⊥, where

u → v =

{
1 u ≤ v

v else



fragments of G[0,1]

weak quantifier fragment of G[0,1]

I admits Herbrand expansions (cut-free proofs in hypersequent
calculi),

I as propositional Gödel logic interpolates, the weak quantifier
fragment interpolates, too

fragment A ⊃ B, A,B prenex

I skolemization as in classical logic

I construct Herbrand expansion

I interpolate

I go back to Skolem form

I use immediate analogy of the 2nd ε-theorem to obtain the
original formula


