First-Order Interpolation of Non-Classical Logics Derived from Propositional Interpolation

> Matthias Baaz joint work with Anela Lolic

> > TU Wien

connect propositional and first-order interpolation

general methodology

 $\left. \begin{array}{c} \text{existence of suitable skolemizations } + \\ \text{existence of Herbrand expansions } + \\ \text{propositional interpolance} \end{array} \right\} \rightarrow \begin{array}{c} \text{first-order} \\ \text{interpolation.} \end{array}$

This methodology is realized for lattice-based finitely-valued logics and can be extended to (fragments of) infinitely-valued logics.

the procedure

- 1. Develop a validity equivalent skolemization replacing all strong quantifiers in the valid formula $A \supset B$ to obtain the valid formula $A_1 \supset B_1$.
- Construct a valid Herbrand expansion A₂ ⊃ B₂ for A₁ ⊃ B₁. Occurrences of ∃xB(x) and ∀xA(x) are replaced by suitable finite disjunctions ∨ B(t_i) and conjunctions ∧ B(t_i).
- 3. Interpolate the propositionally valid formula $A_2 \supset B_2$ with the propositional interpolant I^* :

$$A_2 \supset I^*$$
 and $I^* \supset B_2$

are propositionally valid.

the procedure

4 Reintroduce weak quantifiers in $A_2 \supset I^*$ and $I^* \supset B_2$ to obtain valid formulas

$$A_1 \supset I^*$$
 and $I^* \supset B_1$.

- 5 Eliminate all function symbols and constants not in the common language of A_1 and B_1 by introducing suitable quantifiers in I^* . Let I be the result.
- 6 I is an interpolant for A₁ ⊃ B₁. A₁ ⊃ I and I ⊃ B₁ are skolemizations of A ⊃ I and I ⊃ B. Therefore I is an interpolant of A ⊃ B.

lattice-based finitely-valued logics

finite lattices $L = \langle W, \leq, \cup, \cap, 0, 1 \rangle$ where $\cup, \cap, 0, 1$ are supremum, infimum, minimal element and maximal element, $0 \neq 1$

A propositional language for L, $\mathcal{L}^{0}(L, V)$, $V \subseteq W$ is based on propositional variables, truth constants C_{v} for $v \in V$, \lor , \land , \supset .

A first-order language for L, $\mathcal{L}^1(L, V)$, $V \subseteq W$ is based on the usual first-order variables, predicates, truth constants C_v for $v \in V, \forall, \land, \supset, \exists, \forall$.

 $\rightarrow: W \times W \Rightarrow W$ for $L = \langle W, \leq, \cup, \cap, 0, 1 \rangle$ is an admissible implication iff

$$u o v = 1 \quad \Leftrightarrow \quad u \le v,$$

 $u \le v, f \le g \quad \Rightarrow \quad v o f \le u o g$

skolemization

$\left. \begin{array}{c} \text{existence of suitable skolemizations +} \\ \text{existence of Herbrand expansions +} \\ \text{propositional interpolance} \end{array} \right\} \rightarrow \begin{array}{c} \text{first-order} \\ \text{interpolation.} \end{array}$

task: develop a validity equivalent skolemization replacing all strong quantifiers in the valid formula $A \supset B$ to obtain a valid formula $sk(A) \supset sk(B)$, s.t. the original formula can be reconstructed

skolemization

A(sk(B)) is defined as follows: replace strong quantifiers in B

$$\exists x C(x) \longrightarrow \bigvee_{i=1}^{|W|} C(f_i(\overline{x})), \qquad \forall x C(x) \longrightarrow \bigwedge_{i=1}^{|W|} C(f_i(\overline{x}))$$

where f_i are new function symbols and \overline{x} are the weakly quantified variables of the scope

Skolem axioms are closed sentences

$$\forall \overline{x} (\exists y A(y, \overline{x}) \supset \bigvee_{i=1}^{|W|} A(f_i(\overline{x}), \overline{x}), \qquad \forall \overline{x} (\bigwedge_{i=1}^{|W|} A(f_i(\overline{x}), \overline{x}) \supset \forall y A(y, \overline{x}))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where f_i are new function symbols (Skolem functions)

skolemization

Lemma

- 1. $\models^1 A(B) \Rightarrow \models^1 A(sk(B))$
- 2. $S_1 \dots S_k \models^1 A(sk(B)) \Rightarrow S_1 \dots S_k \models^1 A(B)$ for suitable Skolem axioms $S_1 \dots S_k$
- 3. $S_1 \dots S_k \models^1 A \implies \models^1 A$ where $S_1 \dots S_k$ are Skolem axioms and A does not contain Skolem functions

Herbrand expansions

 $\left. \begin{array}{c} \text{existence of suitable skolemizations +} \\ \text{existence of Herbrand expansions +} \\ \text{propositional interpolance} \end{array} \right\} \rightarrow \begin{array}{c} \text{first-order} \\ \text{interpolation.} \end{array}$

task: construct a valid Herbrand expansion $A_H \supset B_H$ for $sk(A) \supset sk(B)$

expansion

Let A contain only weak quantifiers. An expansion of A is a quantifier free closed formula where

$$\exists x B(x) \text{ in } A \longrightarrow \bigvee B(t_i), \qquad \forall x C(x) \text{ in } A \longrightarrow \bigwedge C(s_j)$$

for some t_i , s_j .

Herbrand expansions can be constructed

A Herbrand expansion is a valid expansion.

Proposition Let A contain only weak quantifiers. Then

 $\models^1 A \Leftrightarrow$ there is a valid Herbrand disjunction A_H .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\left. \begin{array}{c} \text{existence of suitable skolemizations +} \\ \text{existence of Herbrand expansions +} \\ \text{propositional interpolance} \end{array} \right\} \rightarrow \begin{array}{c} \text{first-order} \\ \text{interpolation.} \end{array}$

Theorem

Interpolation holds for
$$L^0(L, V, \rightarrow)$$

 \uparrow
Interpolation holds for $L^1(L, V, \rightarrow)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

the interpolation theorem

Proof. One direction is trivial. Let's consider the the other. \Downarrow : Assume $A \supset B \in \mathcal{L}(L, V)$ and $\models A \supset B$.

then, $\models sk(A) \supset sk(B)$

construct a Herbrand expansion $A_H \supset B_H$ from $sk(A) \supset sk(B)$ construct prop. interpolant to obtain $\models A_H \supset I^*$, $\models I^* \supset B_H$ use $\models A(t) \supset \exists xA(x)$ and $\models \forall xA(x) \supset A(t)$ to obtain $\models sk(A) \supset I^*$ and $\models I^* \supset sk(B)$ order all terms f(t) in I^* by inclusion (f is not in the common language)

let $f^*(\overline{t})$ be the maximal such term in

 $\models sk(A) \supset I^*$ and $\models I^* \supset sk(B)$

*f** is not in *sk*(*A*):
replace *f**(*t*) by a fresh variable *x* : |= *sk*(*A*) ⊃ *I**{*f**(*t*) ← *x*}
but then, |= *sk*(*A*) ⊃ ∀*xI**{*f**(*t*) ← *x*}
by |= ∀*xI**{*f**(*t*) ← *x*} ⊃ *I** also |= ∀*xI**{*f**(*t*) ← *x*} ⊃ *sk*(*B*)
so we obtain

 $\models sk(A) \supset \forall xI^* \{ f^*(\overline{t}) \leftarrow x \} \text{ and } \models \forall xI^* \{ f^*(\overline{t}) \leftarrow x \} \supset sk(B)$

• $f^*(\overline{t})$ is not in sk(B)

replace $f^*(\overline{t})$ by a fresh variable $x : \models I^* \{ f^*(\overline{t}) \leftarrow x \} \supset sk(B)$

but then,
$$\models \exists x I^* \{ f^*(\overline{t}) \leftarrow x \} \supset sk(B)$$

by $\models I^* \supset \exists x I^* \{ f^*(\overline{t}) \leftarrow x \}$ also $\models sk(A) \supset \exists x I^* \{ f^*(\overline{t}) \leftarrow x \}$
so we obtain

 $\models sk(A) \supset \exists xI^* \{ f^*(\overline{t}) \leftarrow x \} \text{ and } \models \exists xI^* \{ f^*(\overline{t}) \leftarrow x \} \supset sk(B)$

repeat until all functions and constants not in the common language are eliminated (among them the Skolem functions), let *I* be the result

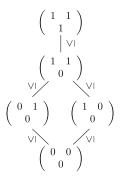
I is an interpolant of $sk(A) \supset sk(B)$, therefore

 $A \supset I$ and $I \supset B$

The constant-domain intuitionistic Kripke frame ${\cal K}$

 $(\beta) (\gamma) \\ \langle \{\alpha, \beta, \gamma\}, \leq \rangle$

is represented by the following lattice L



construct interpolant for $\exists x (B(x) \land \forall y C(y)) \supset \exists x (A(x) \lor B(x))$

construct interpolant for $\exists x (B(x) \land \forall y C(y)) \supset \exists x (A(x) \lor B(x))$

1. skolemization

$$\bigvee_{i=1}^{5} (B(c_i) \land \forall y C(y)) \supset \exists x (A(x) \lor B(x))$$

construct interpolant for $\exists x (B(x) \land \forall y C(y)) \supset \exists x (A(x) \lor B(x))$

1. skolemization

$$\bigvee_{i=1}^{5} (B(c_i) \land \forall y C(y)) \supset \exists x (A(x) \lor B(x))$$

2. Herbrand expansion

$$\bigvee_{i=1}^{5} (B(c_i) \wedge C(c_1)) \supset \bigvee_{i=1}^{5} (A(c_i) \vee B(c_i))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

construct interpolant for $\exists x (B(x) \land \forall y C(y)) \supset \exists x (A(x) \lor B(x))$

1. skolemization

$$\bigvee_{i=1}^{5} (B(c_i) \land \forall y C(y)) \supset \exists x (A(x) \lor B(x))$$

2. Herbrand expansion

$$\bigvee_{i=1}^5 (B(c_i) \wedge C(c_1)) \supset \bigvee_{i=1}^5 (A(c_i) \vee B(c_i))$$

3. propositional interpolant

$$\bigvee_{i=1}^{5} (B(c_i) \wedge C(c_1)) \supset \bigvee_{i=1}^{5} B(c_i), \qquad \bigvee_{i=1}^{5} B(c_i) \supset \bigvee_{i=1}^{5} (A(c_i) \vee B(c_i))$$

3. propositional interpolant

$$\bigvee_{i=1}^{5} (B(c_i) \wedge C(c_1)) \supset \bigvee_{i=1}^{5} B(c_i), \qquad \bigvee_{i=1}^{5} B(c_i) \supset \bigvee_{i=1}^{5} (A(c_i) \vee B(c_i))$$

4. back to the Skolem form

$$\bigvee_{i=1}^{5} (B(c_i) \land \forall y C(y)) \supset \bigvee_{i=1}^{5} B(c_i), \qquad \bigvee_{i=1}^{5} B(c_i) \supset \exists x (A(x) \lor B(x))$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

3. propositional interpolant

$$\bigvee_{i=1}^{5} (B(c_i) \wedge C(c_1)) \supset \bigvee_{i=1}^{5} B(c_i), \qquad \bigvee_{i=1}^{5} B(c_i) \supset \bigvee_{i=1}^{5} (A(c_i) \vee B(c_i))$$

 $\label{eq:starset} \textbf{4.} \ \text{back to the Skolem form}$

$$\bigvee_{i=1}^{5} (B(c_i) \land \forall y C(y)) \supset \bigvee_{i=1}^{5} B(c_i), \qquad \bigvee_{i=1}^{5} B(c_i) \supset \exists x (A(x) \lor B(x))$$

5. eliminate function symbols and constants not in the common language

$$\bigvee_{i=1}^{5} (B(c_i) \land \forall y C(y)) \supset \exists z_1 \dots \exists z_5 \bigvee B(z_i),$$
$$\exists z_1 \dots \exists z_5 \bigvee B(z_i) \supset \exists x (A(x) \lor B(x))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

5.

$$\bigvee_{i=1}^{5} (B(c_i) \land \forall y C(y)) \supset \exists z_1 \dots \exists z_5 \bigvee B(z_i),$$
$$\exists z_1 \dots \exists z_5 \bigvee B(z_i) \supset \exists x (A(x) \lor B(x))$$

6. use Skolem axiom

$$\exists x (B(x) \land \forall y C(y)) \supset \bigvee_{i=1}^{5} B(c_i) \land \forall y C(y)$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

to obtain original formula, Skolem axiom can be eliminated

Corollary

Interpolation holds for $L^{0}(L, V, \rightarrow)$, $\models A \supset B$, $A \supset B$ contain only weak quantifiers \downarrow

there is a quantifier-free interpolant for $A \supset B$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Corollary

Interpolation holds for $L^0(L, V, \rightarrow)$, $\models A \supset B$, $A \supset B$ contain only weak quantifiers \Downarrow

there is a quantifier-free interpolant for $A \supset B$.

Proposition

Let $L = \langle W, \leq, \cup, \cap, 0, 1 \rangle$.

- i. $L^{0}(L, \emptyset, \rightarrow)$ (and therefore $L^{1}(L, \emptyset, \rightarrow)$) never has the interpolation property.
- ii. $L^0(L, W, \rightarrow)$ (and therefore $L^1(L, \emptyset, \rightarrow)$) always has the interpolation property.

It is therefore reasonable to consider the function

 $SPEC(L, \rightarrow) = \{ V \mid \mathbf{L}^{1}(L, V, \rightarrow) \text{ interpolates} \}.$

extensions to infinitely-valued logics

use described methodology to prove interpolation for (fragments of) infinitely-valued logics

▶ Gödel logic G_[0,1], the logic of all linearly ordered Kripke frames with constant domains

its connectives can be interpreted as functions over the real interval $\left[0,1\right]$

- \perp : logical constant for 0
- ► V, ∧, ∃, ∀ are defined as maximum, minimum, supremum, infimum
- ▶ $\neg A$: $A \rightarrow \bot$, where

$$u \to v = \begin{cases} 1 & u \le v \\ v & \text{else} \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

fragments of $G_{[0,1]}$

weak quantifier fragment of $G_{[0,1]}$

- admits Herbrand expansions (cut-free proofs in hypersequent calculi),
- as propositional Gödel logic interpolates, the weak quantifier fragment interpolates, too

fragment $A \supset B$, A, B prenex

- skolemization as in classical logic
- construct Herbrand expansion
- interpolate
- go back to Skolem form
- use immediate analogy of the 2nd ε-theorem to obtain the original formula